Head Blight Gradients Caused by Gibberella zeae from Area Sources of Inoculum in Wheat Field Plots.

نویسندگان

  • W G Fernando
  • T C Paulitz
  • W L Seaman
  • P Dutilleul
  • J D Miller
چکیده

ABSTRACT The spread of Fusarium head blight of wheat from a small area inoculum source was examined in wheat plots (100, 625, or 2,500 m(2)) inoculated in the center with Gibberella zeae-colonized corn kernels or macro-conidia sprayed on heads at anthesis. With the first inoculation method, disease foci were produced from ascospores released from perithecia formed on inoculated kernels. With the second inoculation method, disease foci were produced by macroconidia directly applied to the heads. Some plots were misted during anthesis. Plots were divided into grids, and disease incidence on spikelets and seeds was assessed at the grid intersections. Isopath contour maps were constructed using an interpolation procedure based on a weighted least squares method. Disease gradients were constructed from the isopath contours in the direction parallel to average nightly wind vectors using an exponential model. This study was conducted over a 3-year period at two sites: one in Quebec and one in Ontario. Both inoculation methods resulted in a discrete, primary focus of head blight in each plot, with one or two smaller secondary foci in some plots. The highest incidence of disease on spikelets or seed was commonly displaced somewhat from the inoculum source, usually downwind. The gradient slopes of seed and spikelet infection ranged from -0.10 to -0.43 m(1) in plots with ascospore inoculum and from -0.48 to -0.79 m(1) in plots inoculated with macroconidia. Seed infection declined to 10% of the maximum within 5 to 22 m from the focal center in asco-spore-inoculated plots, and within 5 m in a macroconidia-inoculated plot. Gradients were usually steeper upwind compared with downwind of the inoculum source. In misted plots, incidence of disease was higher and more diffuse than in nonirrigated plots. Based on gradients and dispersal patterns, disease foci in plots inoculated with G. zeae-colonized corn kernels probably arose from airborne ascospores rather than from splash-borne macroconidia and were the result of infection events that occurred over a short period of time. Comparison of conidial- and ascospore-derived disease gradients indicated a lack of secondary infection, confirming that Fusarium head blight is primarily a monocyclic disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Rainfall and Temperature on Production of Perithecia by Gibberella Zeae in Field Debris in Michigan

Gibberella zeae (anamorph Fusarium graminearum) causes scab (blight) in wheat and barley, and ear rot in corn. Since 1991, epidemics of Gibberella head blight have struck the Midwestern states with disastrous effects on wheat and barley growers. The fungus decreases yields and also contaminates grain with trichothecene mycotoxins that are harmful to human and animal health. To understand and co...

متن کامل

Deletion and complementation of the mating type (MAT) locus of the wheat head blight pathogen Gibberella zeae.

Gibberella zeae, a self-fertile, haploid filamentous ascomycete, causes serious epidemics of wheat (Triticum aestivum) head blight worldwide and contaminates grain with trichothecene mycotoxins. Anecdotal evidence dating back to the late 19th century indicates that G. zeae ascospores (sexual spores) are a more important inoculum source than are macroconidia (asexual spores), although the fungus...

متن کامل

Symposium contribution / Contribution à un symposium Epidemiology and biological control of Gibberella zeae / Fusarium graminearum

A decade of losses and damage due to fusarium head blight in cereals in North America and other parts of the world has resulted in great efforts to understand the factors that cause and intensify the disease. This review considers our current understanding of the importance of the contribution of cultural practices to the increase or decrease of inoculum levels, spore dispersal, and biological ...

متن کامل

Session 2: Fhb Management

Knowledge of the relative contribution of within-fi eld inoculum sources of Gibberella zeae to infection of local wheat and barley is important for developing and/or excluding strategies for managing FHB. Our experimental objective was to quantify the relative contribution of within-fi eld corn debris as an inoculum source of Gibberella zeae for Fusarium head blight and DON contamination in ten...

متن کامل

Genetic Structure of Atmospheric Populations of Gibberella zeae.

ABSTRACT Gibberella zeae, causal agent of Fusarium head blight (FHB) of wheat and barley and Gibberella ear rot (GER) of corn, may be transported over long distances in the atmosphere. Epidemics of FHB and GER may be initiated by regional atmospheric sources of inoculum of G. zeae; however, little is known about the origin of inoculum for these epidemics. We tested the hypothesis that atmospher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Phytopathology

دوره 87 4  شماره 

صفحات  -

تاریخ انتشار 1997